“Data Trusts” Could Be the Key to Better AI

George Zarkadakis George Zarkadakis
November 20, 2020 AI & Machine Learning

One of the greatest barriers to adopting and scaling AI applications is the scarcity of varied, high-quality raw data. To overcome it, firms need to share their data. But the many regulatory restrictions and ethical issues surrounding data privacy pose a major obstacle to doing this. A novel solution that my firm is piloting that could solve this problem is a data trust: an independent organization that serves as a fiduciary for the data providers and governs their data’s proper use.

Research shows that companies are becoming increasingly aware of the value of sharing data and are exploring ways to do so with other players in their industry or across industries. Typical use cases for data sharing are fraud detection in financial services, getting greater speed and visibility across supply chains, improving product development and customer experience, and combining genetics, insurance data, and patient data to develop new digital health solutions and insights. Indeed, the research has shown that 66% of companies across all industries are willing to share data. Nevertheless, sharing sensitive company data, particularly personal customer data, is subject to strict regulatory oversight and prone to significant financial and reputational risks.

A data trust that is set up as a fiduciary for the data providers could make it much easier for firms to safely share data by instituting a new way for governing the collection, processing, access, and utilization of the data. That legal and governance setup obliges the data trust administrators (the “fiduciaries”) to represent and prioritize the rights and benefits of the data providers when negotiating and contracting access to their data for use by data consumers, such as other private companies and organizations.

INSIGHT CENTER

  • AI and Equality Designing systems that are fair for all.

Data trusts also can encourage data interoperability as well as the ethical and compliant governance of data — for example, by ensuring that individuals have consented to the various uses of their data (as required by regulation in several jurisdictions around the world), removing data bias, and de-identifying personal data. Moreover, by adopting a new cohort of cutting-edge technologies such as federated machine learning, homomorphic encryption, and distributed ledger technology, a data trust can guarantee transparency in data sharing as well as auditing of who is using the data at any time and for what purpose (i.e. tracking chain of custody for data), thus removing the considerable legal and technological friction that currently exists in data sharing.

Data consumers who sign contracts with the trust to gain access to its data can then focus on the utility that can be derived from analyzing the data or using it to train AI algorithms without undertaking the compliance and reputational risk. They can do so either on their own (i.e., as direct data consumers) or — perhaps more powerfully — by forming “minimal viable consortia” (MVC) where data providers and data consumers share data resources and talent to focus on a specific business case.

How to set up a data trust. My firm, Willis Towers Watson, recently piloted a data trust together with several of its clients. Our purpose was to test the concept and understand how to apply it in a business scenario. The three key objectives were: (1) how to identity a business case and form a successful MVC; (2) what should be the legal and ethical governance framework or frameworks to enable data sharing; and (3) understand what technologies we needed to assemble or develop in order to promote transparency and trust in the MVC. Here are some of the lessons we learned during the pilot:

Develop an ethical and legal framework for data sharing. We found that it was important at the outset to set up foundational principles and aspirations to which everyone agreed. For instance, the members of the pilot MVC decided they would commit themselves to ensuring privacy of all the individuals’ data it held and delivering not only business but also social value. We worked closely with legal and privacy experts to formulate a legal framework that would ensure compliance with the European Union’s General Data Protection Regulation (GDPR). And the members also decided that for the MVC to go beyond the pilot stage and be commercialized, it would need to be audited by an independent “ethics council” that would explore the ethical and other implications of the use of data and the resulting AI algorithms.

Employ a federated/distributed architecture. Organizations are generally not comfortable with the idea of transferring sensitive data from their infrastructure to an external environment. We therefore looked into a federated approach, whereby data remained where it is and algorithms are distributed to the data. We investigated several privacy-preserving technologies, including differential privacy and homomorphic encryption. To ensure transparency in data governance, as well as trusted auditing and chain of custody, we also explored the application of distributed ledger technology (e.g., blockchain) as part of the technology stack. We architected the data trust as a cloud-native peer-to-peer application that would achieve data interoperability, share computational resources, and provide data scientists with a common workspace to train and test AI algorithms.

The way forward. The journey to becoming a data-driven organization fit for the emerging AI economy is long and arduous. Data trusts are an opportunity for collaboration between organizations to make that journey faster, less costly, and less risky. And they can make data-monetization rewards more handsome by co-developing marketable AI applications and giving third parties controlled access to members’ data. Moreover, as we discovered during our pilot, a data trust can also help inspire creativity, cross-functional collaboration, and innovation, and can attract digital talent. As wearables, smart appliances, and 5G networks proliferate and combine into the “Intelligent Internet of Things,” data sharing and collaboration will become the norm. Data trusts can help companies make the leap to this new era.

  • Experfy Insights

    Top articles, research, podcasts, webinars and more delivered to you monthly.

  • George Zarkadakis

    Tags
    Data ProvidersData TrustsFiduciaryShare Data
    Leave a Comment
    Next Post
    Synthetic Data: Useful, Privacy-Risk-Free Data

    Synthetic Data: Useful, Privacy-Risk-Free Data

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    More in AI & Machine Learning
    AI & Machine Learning,Future of Work
    AI’s Role in the Future of Work

    Artificial intelligence is shaping the future of work around the world in virtually every field. The role AI will play in employment in the years ahead is dynamic and collaborative. Rather than eliminating jobs altogether, AI will augment the capabilities and resources of employees and businesses, allowing them to do more with less. In more

    5 MINUTES READ Continue Reading »
    AI & Machine Learning
    How Can AI Help Improve Legal Services Delivery?

    Everybody is discussing Artificial Intelligence (AI) and machine learning, and some legal professionals are already leveraging these technological capabilities.  AI is not the future expectation; it is the present reality.  Aside from law, AI is widely used in various fields such as transportation and manufacturing, education, employment, defense, health care, business intelligence, robotics, and so

    5 MINUTES READ Continue Reading »
    AI & Machine Learning
    5 AI Applications Changing the Energy Industry

    The energy industry faces some significant challenges, but AI applications could help. Increasing demand, population expansion, and climate change necessitate creative solutions that could fundamentally alter how businesses generate and utilize electricity. Industry researchers looking for ways to solve these problems have turned to data and new data-processing technology. Artificial intelligence, in particular — and

    3 MINUTES READ Continue Reading »

    About Us

    Incubated in Harvard Innovation Lab, Experfy specializes in pipelining and deploying the world's best AI and engineering talent at breakneck speed, with exceptional focus on quality and compliance. Enterprises and governments also leverage our award-winning SaaS platform to build their own customized future of work solutions such as talent clouds.

    Join Us At

    Contact Us

    1700 West Park Drive, Suite 190
    Westborough, MA 01581

    Email: support@experfy.com

    Toll Free: (844) EXPERFY or
    (844) 397-3739

    © 2023, Experfy Inc. All rights reserved.